
Chapitre 02 – Fonctions polynômes de degré 2

Activité 1 - Tir au panier

Un joueur de basket est situé sur la ligne de lancer franc à 4,60 m du panier. Le panier est situé à une hauteur de 3,05 m.

La hauteur du ballon tiré par le joueur est donnée par la fonction f définie sur l'intervalle [0;5] par $f(x)=-0.2x^2+1.084x+2.3$ où x est la distance horizontale entre le joueur et le panier. Le joueur est en position x=0.

Problématiques :

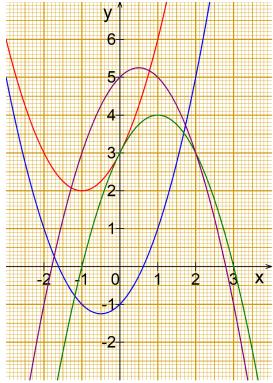
- 1. Le panier sera-t-il marqué ?
- **2.** Quelle doit être la hauteur maximale que doit atteinfre un joueur adverse s'il veut stopper le ballon à son point le plus haut ?
- 1. Donner la nature de la fonction f Cours 1
- **2.1.** Calculer f(0).
- 2.2. Interpréter en rapport avec la situation le résultat précédent.
- 3. Indiquer quelle est l'équation à résoudre pour répondre à la problématique 1.
- **4.1. Tracer** sur la calculatrice la courbe représentatives de la fonction f Calc 16.

```
Fenêtre graphique:

Xmin=0; Xmax=5; Xgrad=0,5.

Ymin=0; Ymax=5; Ygrad=1.
```

- **5.1. Tracer** sur la calculatrice la courbe représentative de la fonction g définie sur l'intervalle [0;5] par g(x)=3,05.
- 5.2. Indiquer à quoi correspond ce tracé.


- **6.1. Indiquer** le nombre de solution(s) à l'équation f(x) = g(x).
- **6.2. Déterminer** graphiquement l'abscisse des points d'intersection des courbes représentatives des fonctions f et g (arrondir au centième) Calc 17. Arrondir au centième.
- 6.3. Répondre à la problématique 1.
- 7.1. Déterminer graphiquement sur la calculatrice le maximum de la fonction f Calc 19
- 7.2. Répondre à la problématique 2.
- **8. Reproduire** et **compléter** le tableau de variations de la fonction f sur l'intervalle [0;5].

X	
f(x)	

Exercices

Exercice 1

Parmi les différentes paraboles représentées ci-contre, **donner** la couleur de celle qui correspond au polynôme $P(x)=x^2+2x+3$. **Justifier** la réponse.

Exercice 2

Pour chacun des polynômes suivants, **déterminer** la valeur des coefficients a, b et c puis en **déduire** l'allure de la courbe représentative de la fonction correspondante.

1.
$$3x^2 - 3x + 2$$
.

2.
$$-2x^2+x-5$$
.

3.
$$x^2 - 4x + 6$$
.

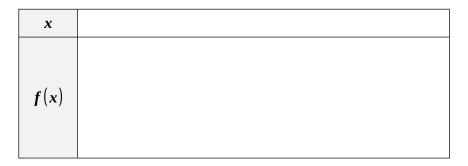
4.
$$-x^2-2x+1$$
.

5.
$$4x^2 + 3$$
.

6.
$$-3x^2+4x$$
.

7.
$$2x-5x^2+6$$
.

Exercice 3


Soit la fonction f définie sur l'intervalle [-15;10] par $f(x)=0,2x^2+4x-3$.

- 1. Calculer l'abscisse du sommet et donner l'ordonnée à l'origine.
- **2. Tracer** sur la calculatrice la courbe représentative de la fonction f.

Fenêtre graphique :

$$Xmin=-15$$
 ; $Xmax=10$; $Xgrad=5$.
 $Ymin=-30$; $Ymax=60$; $Ygrad=10$.

- 3. Préciser la nature de l'extremum puis donner ses coordonnées.
- **4. Reproduire** et **compléter** le tableau de variations de la fonction f sur l'intervalle [-15;10] en utilisant le graphique obtenu à la question 2.

Exercice 4

Soit la fonction f définie sur l'intervalle [-2;2] par $f(x)=-2x^2+2x+1$.

- 1. Calculer l'abscisse du sommet et donner l'ordonnée à l'origine.
- **2. Tracer** sur la calculatrice la courbe représentative de la fonction f.

3. Préciser la nature de l'extremum puis donner ses coordonnées.

4. Reproduire et compléter le tableau de variations de la fonction f sur l'intervalle $[-2;$	2] en
utilisant le graphique obtenu à la question 2.	

f(x)