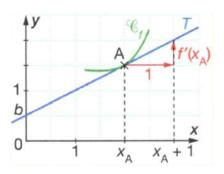
Cours


Cours 1 – Tangente et nombre dérivé

Soit une fonction f et un point A situé sur sa courbe représentative C_f .

La **tangente** T à la courbe au point A est la droite qui vient « toucher » la courbe en A.

Le **coefficient directeur** de la tangente au point A d'abscisse x_A est le **nombre dérivé** de la fonction f en x_A . Il est noté $f'(x_A)$.

L'équation réduite de la tangente est alors $y=f'(x_A) \times x + b$.

Cours 2 - Fonction dérivée

La **fonction dérivée** d'une fonction f sur un intervalle I est la fonction notée $f^{'}$ qui à chaque valeur x_0 de I associe le nombre dérivé $f^{'}(x_0)$.

Cours 3 - Formules de dérivation

Notation : f : fonction f' : fonction dérivée de f

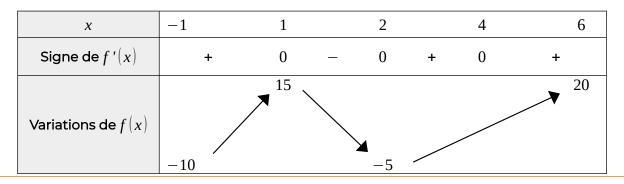
a, b: nombres quelconques

u, v: fonctions u', v': fonctions dérivées respectivement de u et v

Fonction f	Dérivée f '		
а	0		
ax+b	а		
x ²	2 <i>x</i>		
u(x)+v(x)	u'(x)+v'(x)		
$a \times u(x)$	$a \times u'(x)$		

Cours 4 – Variations d'une fonction

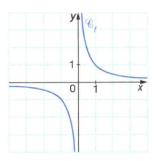
Soit f une fonction dérivable sur un intervalle I alors :


Si la dérivée f' est **positive** sur I alors la fonction f est **croissante** sur I.

Si la dérivée f ' est **négative** sur I alors la fonction f est **décroissant**e sur I.

Si la dérivée f' est **nulle et change de signe** en un point d'abscisse x_0 de I alors la fonction f passe par un **extremum local** (**minimum local** ou **maximum local**) en x_0 .

Les plus petites et les plus grandes valeurs sur un intervalle (sans que la dérivée ne s'annule) sont des **extremum globaux**.


Les variations d'une fonction sont représentées à l'aide d'un tableau de variations.

Cours 5 - Fonction inverse

La **fonction inverse** est définie pour tout réel x non nul par $f(x) = \frac{1}{x}$.

Sa courbe représentative est une hyperbole.

Sa fonction dérivée est $f'(x) = \frac{-1}{x^2}$.

Son tableau de variations est :

X	- ∞	0	+ ∞
Signe de $f'(x)$	-	_	
Variations de f			