Activité 1 – Simuler plusieurs lancers successifs d'une pièce de monnaie

Lorsqu'on lance une pièce de monnaie, il y a deux **issues** possibles : PILE ou FACE. Lorsque la pièce de monnaie est bien équilibrée on dit qu'on réalise une **expérience aléatoire** car le résultat est dû au **hasard**. Dans ce cas là, la **probabilité** d'obtenir le côté PILE est d'une chance sur 2 soit 0,5. On peut également réaliser plusieurs lancers successifs. On obtient alors un **échantillon** d'une taille égale au nombre de lancers. Sur l'échantillon, on peut alors calculer la **fréquence** de PILE en faisant le rapport entre le nombre de côtés PILE obtenus sur le nombre de lancers

Observer la fluctuation des fréquences

On peut simuler avec le tableur le lancer d'une pièce de monnaie en générant des nombres aléatoires. On décide par convention que le 1 correspond au côté PILE et que le 2 correspond au côté FACE.

Un premier échantillon de 10 lancers a été constitué sur le tableur. Les résultats obtenus sont donnés dans le tableau ci-contre.

	Α	В
1	Lancer n°	Résultat
2	1	2
3	3	2 2 2
4	3	2
5	4	1
6	5	2
7	6	1
8	7	2
9	8	1
10	9	2
11	10	2

1.1. Compter le nombre de 1 obtenus dans l'échantillon et en déduire le nombre de côtés PILE obtenus.

1.2. Calculer la fréquence de PILE dans le premier échantillon et reporter le résulat dans le tableau ci-après.

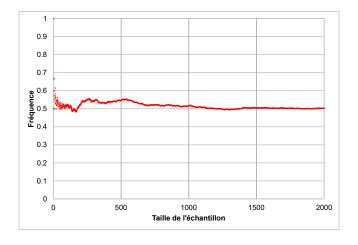
Echantillon n°	1	2	3	4	5	6	7	8	9	10
Fréquence de PILE										

- 2.1. Ouvrir la feuille de calcul C1.
- **2.2. Générer** un nouvel échantillon en appuyant sur la touche F9 du clavier. **Compter** le nombre de 1 obtenus, **calculer** la fréquence de PILE puis **compléter** la colonne Echantillon n°2 du tableau précédent.
- 2.3. Répéter la question 2.2 jusqu'à avoir intégralement complété le tableau précédent.
- 3.1. Observer le tableau.
- 3.2. Indiquer si les fréquences obtenues sont égales à la probabilité d'obtenir le côté PILE.
- 3.3. Expliquer la raison pour laquelle les fréquences du tableau ne sont pas toutes égales

 Cours 2
- **4. Calculer** l'étendue des fréquences dans le tableau précédent. Cette valeur mesure la fluctuation d'échantillonnage.

5.1. Ouvrir la feuille de calcul <u>C2</u>. Ce fichier simule le lancer de 100 pièces de monnaie et calcule automatiquement la fréquence de côtés PILE obtenus.

	Α	В	C	D	E
1	Lancer n°	Résultat			
2	1	1			
3	2	1		Nombre de PILE	43
4	3	2		Fréquence de PILE	0.43
5	4	2			


5.2. Compléter le tableau ci-après pour 9 autres échantillons de taille 100 (**utiliser** la touche F9 du clavier pour générer un nouvel échantillon).

Echantillon n°	1	2	3	4	5	6	7	8	9	10
Fréquence de PILE	0,43									

- **6.1. Indiquer** si le phénomène de fluctuation des fréquences est toujours observable.
- **6.2. Calculer** l'étendue des fréquences dans le tableau précédent.
- **7. Comparer** les résultats des questions 4 et 6.2 puis **indiquer** l'effet de la taille de l'échantillon sur l'étendue des fréquences.

Utiliser les fréquences pour estimer une probabilité

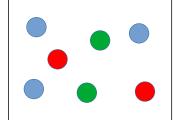
- **8. Rappeler** la valeur de la probabilité d'obtenir le côté PILE lors du lancer d'une pièce de monnaie bien équilibrée. On note cette probabilité P(PILE).
- **9.1. Ouvrir** la feuille de calcul <u>C3</u>. Ce fichier donne un graphique avec l'évolution de la fréquence de sortie du côté PILE lorsque le nombre de lancers augmente de 1 à 2000.

- **9.2. Appuyer** plusieur fois sur la touche F9 du clavier et **observer** comment évolue la fréquence pour un grand nombre de lancers Cours 4.
- 10. Expliquer comment on peut estimer une probabilité à l'aide des fréquences.

Exercices

Exercice 1

On lance une pièce de 1 euro bien équilibré et on note la face visible.


- 1.1. Expliquer si c'est une expérience aléatoire. Justifier la réponse.
- **1.2. Donner** toutes les issues possibles.
- 2. La pièce est lancée 15 fois. Les résultats sont donnés ci-après. **Calculer** la fréquence d'apparition de chaque côté.

Exercice 2

Une urne transparente contient des boules de différentes couleurs, indiscernables au toucher.

1.1. Expliquer si c'est une expérience aléatoire. **Justifier** la réponse.

- **1.2. Donner** toutes les issues possibles.
- 2. Une boule est tirée dans l'urne. Elle est ensuite remise dans l'urne avant un nouveau tirage. 12 tirages sont réalisés. Les résultats sont donnés ci-après. **Calculer** la fréquence d'apparition de chaque couleur (**arrondir** au centième si nécessaire).

Exercice 3

Indiquer quelles sont parmi les situations suivantes celles qui correspondent à une expérience aléatoire ? **Justifier** la réponse.

- a. Choisir un nombre compris entre 1 et 10.
- b. Lancer un dé et noter le résultat.
- c. Piocher une carte dans un jeu de 52 cartes.
- d. Prendre une pièce dans un porte-monnaie.
- e. Répondre à un sondage.
- f. Tirer des jetons indiscernables au toucher dans un sac opaque.

Exercice 4

- 1.1. À l'aide de la calculatrice, générer et relever 20 nombres aléatoires entiers entre 1 et 3 1 Calc 08
- 1.2. Reproduire et compléter le tableau ci-après à partir des résultats obtenus.

Issue	1	2	3	Total
Effectif				
Fréquence décimale				

2. Répéter une deuxième fois la manipulation précédente puis reproduire et compléter le tableau ci-après à partir des nouveau résultats obtenus.

Issue	1	2	3	Total
Effectif				
Fréquence décimale				

- **3.1. Comparer** entre elles les fréquences d'une même issue.
- 3.2. Expliquer pourquoi les fréquences d'une même issue entre deux échantillon différents de même taille peuvent être différentes.

Exercice 5

On lance un dé bien équilibré comportant 8 faces numérotées de 1 à 8.

- **1.1. Expliquer** si c'est une expérience aléatoire. **Justifier** la réponse.
- **1.2. Donner** toutes les issues possibles.
- 2. Un échantillon un premier échantillon de taille 20 par simulation sur la nbrAléatEnt(1,8,10) calculatrice. Pour des raison pratiques d'affichage, l'échantillon de taille 20 est réalisé à partir de 2 échantillons de taille 10. On obtient les résultats ci-après.

- 2.1. Calculer la fréquence décimale de sortie de la face 8.
- 2.2. Reproduire et compléter le tableau ci-après à partir des résultats obtenus pour l'échantillon n°1.

Échantillon n°	1	2	3	4	5	6
Fréquence décimale de 8						

3. On réalise 5 autres échantillons. Les résultats sont donnés ci-après. Pour chaque échantillon, calculer la fréquence décimale de sortie de la face 8 puis compléter le tableau de la question 2.2.

- 4. Calculer l'étendue des fréquences pour la série d'échantillons de taille 20.
- **5.** Une simulation a été réalisée avec des échantillons de taille 200. Les résultats obtenus sont donnés dans la tableau ci-après. **Calculer** l'étendue des fréquences pour la série d'échantillons de taille 200.

Échantillon n°	1	2	3	4	5	6
Fréquence décimale de 8	0,13	0,125	0,085	0,14	0,11	0,125

- **6. Comparer** les étendues des échantillons de taille 20 et des échantillons de taille 200. **Indiquer** si le résultat était prévisible.
- 7. Une simulation est réalisée avec des échantillons de taille croissante entre 1 et 2000. Le graphique donnant l'évolution de la fréquence en fonction de la taille de l'échantillon est donné ci après. À l'aide du graphique, **donner** une estimation de la probabilité d'obtenir la face 8 lors d'un lancer d'un dé à 8 faces. **Justifier** la réponse.

