Activité 1 - La fonction cube

Soit f la fonction cube définie pour tout nombre réel x par $f(x)=x^3$.

1. Reproduire et compléter la deuxième ligne du tableau de valeurs ci-après.

Х	-2	-1	-0,5	0	0,5	1	2
f(x)							
f'(x)	12						

2. Tracer sur la calculatrice la courbe représentative de la fonction cube (utiliser la couleur bleue pour le tracé).

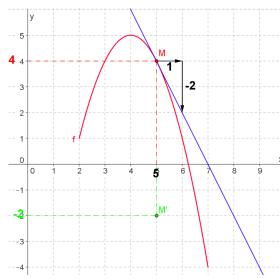
Fenêtre graphique: Xmin=-2; Xmax=2; Xgrad=0,5. Ymin=-13; Ymax=13; Ygrad=2.

- 3. Observer le tableau de valeurs précédent ainsi que la courbe obtenue puis conjecturer le domaine de définition ainsi que le sens de variation de la fonction cube Cours 1.
- **4.** On rappelle que le **nombre dérivé** d'une fonction en un point d'abscisse x_0 donné est le **coefficient directeur** de la **tangente** à la courbe représentative de la fonction f en ce point d'abscisse x_0 . On note $f'(x_0)$ ce nombre dérivé.
- **4.1.** À l'aide de la calculatrice, **tracer** la tangente à la courbe représentative de la fonction cube au point d'abscisse -2. **Relever** le coefficient directeur et **vérifier** qu'il correspond à la valeur donnée dans la troisième ligne du tableau de la question 1 Calc 21.
- 4.2. Répéter la procédure pour toutes les valeurs du tableau de la question 1.
- **4.3. Effacer** toutes les tangentes.
- **5.1.** Sur le graphique précédent, **construire** le nuage de points (utiliser des marques rouges) correspondant aux lignes 1 et 3 du tableau de la question 1. Le nuage de points obtenu dessine l'amorce de la fonction dérivée de la fonction cube Calc 05.
- **5.2. Tracer** en vert la courbe représentative de la fonction $g(x)=3x^2$.

Exercices

Exercice 01

Observer le graphique ci-dessous puis relier chacun des objets à son identification.



- courbe représentative de la fonction f d'expression algébrique $f(x) = -x^2 + 8x 11$.
- point M(5;4).
- tangente à la parabole au point d'abscisse 5.
- pente de la tangente.
- point dérivé M'(5;-2) correspondant au point d'abscisse 5.

Exercice 02

Soit la fonction f définie sur R par $f(x) = \frac{1}{4}x^3$.

- **1. Calculer** f(-2) et f(3).
- **2. Déterminer** f'(x) la fonction dérivée de f(x).

Exercice 03

Pour chacune des fonctions f suivantes, **calculer** sa fonction dérivée f.

1.
$$f(x) = -3x$$

3.
$$f(x) = 2x + 5$$

5.
$$f(x) = 2x^3 + 4x^2 + 5$$

7.
$$f(x) = -6x^3$$

9.
$$f(x) = 5x^2 - 2x$$

11.
$$f(x)=3x^2-4x+2$$

13.
$$f(x) = 4x^3 + 13$$

15.
$$f(x) = 2x^3 + 5x^2 - 4x + 2$$

2.
$$f(x) = \frac{1}{5}x$$

4.
$$f(x) = -2.5x^2 + 0.5x$$

6.
$$f(x) = \frac{x^3}{4} + 3x - 2$$

8.
$$f(x) = \frac{1}{3}x^3 + 5x^2 - 6x + 2$$

10.
$$f(x) = 5x^3 - 2x^2$$

12.
$$f(x) = -3x^2 + 7x - 2$$

14.
$$f(x) = -0.25x^3 - 2x + 5$$

16.
$$f(x) = \frac{1}{3}x^2 - 4x + 7$$