Cours

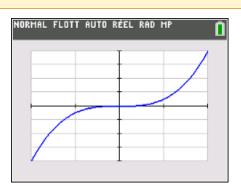
Cours 1 - Fonction cube

La **fonction cube** est la fonction qui à tout nombre réel x associe le nombre x^3 .

Son expression est $f(x)=x^3$.

La fonction cube est croissante.

La courbe représentative de la fonction cube est une **cubique**.



L'origine du repère est le **centre de symétrie** de la courbe représentative de la fonction cube.

Cours 2 – Formules de dérivation

Notation : f : fonction f' : fonction dérivée de f

a, b: nombres quelconques

u, v: fonctions u', v': fonctions dérivées respectivement de u et v

Fonction f	Dérivée f '
а	0
ax+b	а
χ^2	2 <i>x</i>
x^3	$3x^2$
$\frac{1}{x}(x\neq 0)$	$-\frac{1}{x^2}$
u(x)+v(x)	u'(x)+v'(x)
$a \times u(x)$	$a \times u'(x)$

Cours 3 – Fonction polynôme de degré 3

Un **polynôme de degré 3** est une fonction de la forme $f(x)=ax^3+bx^2+cx+d$.

Les nombres a, b, c et d sont les **coefficients** du polynôme.

Le coefficient de x^3 doit être impérativement différent de zéro $(a \ne 0)$.

Cours 4 – Variations d'une fonction

Soit *f* une fonction dérivable sur un intervalle *I* alors :

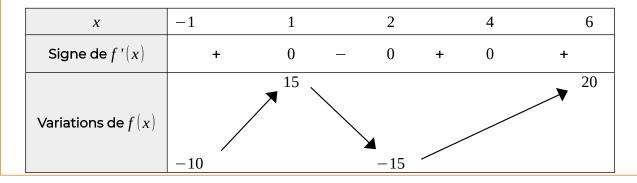
Si la dérivée f' est **positive** sur I alors la fonction f est **croissante** sur I.

Si la dérivée f' est **négative** sur I alors la fonction f est **décroissant**e sur I.

Si la dérivée f' est **nulle et change de signe** en un point d'abscisse x_0 de I alors la fonction f passe par un **extremum local** (**minimum local** ou **maximum local**) en x_0 .

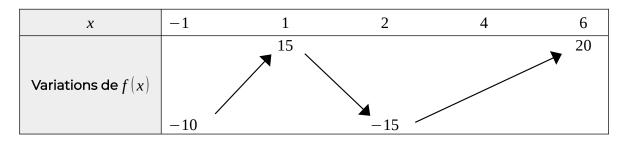
Les plus petites et les plus grandes valeurs sur un intervalle (sans que la dérivée ne s'annule) sont des **extremum globaux**.

Les variations d'une fonction sont représentées à l'aide d'un tableau de variations.



Cours 5 – Utiliser le tableau de variations pour déterminer le nombre de solutions à l'équation f(x)=c

En analysant les valeurs situées dans la ligne « Variations de f » il est possible de déterminer le nombre de solutions à l'équation f(x)=c.



L'équation f(x)=3 admet trois solutions sur l'intervalle [-1;6]:

- 1 solution sur l'intervalle [-1;1] car $3 \in [f(-1);f(1)]$.
- 1 solution sur l'intervalle [1;2] car $3 \in [f(1);f(2)]$.
- 1 solution sur l'intervalle [2;6] car $3 \in [f(2);f(6)]$.

L'équation f(x) = -12 admet deux solutions sur l'intervalle [-1;6]:

- 1 solution sur l'intervalle [1;2] car $-12 \in [f(2);f(1)]$.
- 1 solution sur l'intervalle [2;6] car $-12 \in [f(2);f(6)]$.

L'équation f(x)=17 admet une solution sur l'intervalle [-1;6]:

• 1 solution sur l'intervalle [2;6] car $17 \in [f(2);f(6)]$.